Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Feng-Mei Sun, Man-Man Tian, Zai-Gang Luo and De-Qing Shi*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, People's Republic of China

Correspondence e-mail:
chshidq@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
$R$ factor $=0.057$
$w R$ factor $=0.138$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

## trans-4-(4-Chlorophenyl)-2-[(2-chlorophenyl)-(3-pyridylmethylamino)methyl]-5,5-dimethyl-1,3,2-dioxaphosphinane 2 -oxide

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$, the P atom adopts a distorted tetrahedral configuration. Weak intermolecular N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed, and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions also contribute to the crystal packing.

## Comment

As phosphorus analogues of natural aminocarboxylic acids, 1aminophosphonates have attracted attention for decades (Palacios et al., 2005). Recently, 1,3,2-dioxaphosphinane compounds have appeared to be very important in pesticide and medicinal science, owing to their wide biological activities and stereochemistry (Hirashima et al., 1986; Matsumoto et al.,1992; Meier, 1996). 3-Aminomethylpyridine is also a very important group in neonicotinoid compounds (Yamamoto et al.,1994). We synthesized a series of new cyclic phosphonates containing 3 -aminomethylpyridine, in order to find compounds presenting both low toxicity and high activity.

(I)

We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by the addition reaction of an imine with a cyclic phosphite (see Experimental). The distorted tetrahedral configuration of the P atom can be attributed to the presence of the dioxaphosphinane ring, which has a steric demand influencing the coordination. The bond length for the $\mathrm{P} 1=\mathrm{O} 1$ double bond and the angles around the P atom (Table 1) illustrate this distortion. The dioxaphosphinane ring adopts a distorted chair conformation, with the parameters $Q=0.499$ (3) $\AA, \theta=148.2$ (3) ${ }^{\circ}$ and $\varphi=$ $341.70(2)^{\circ}($ Cremer \& Pople, 1975). The $\mathrm{P} 1=\mathrm{O} 1$ double bond is slightly shorter (Table 1) than the analogous bond observed in previously characterized compounds [e.g. 1.468 (2) Å; Liu et al., 2005].

Intermolecular $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ hydrogen bonds (Table 2) contribute to the stability of the overall conformation and influence the crystal packing. Atoms C 14 and C 16 are involved in $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions:

Received 10 October 2005 Accepted 10 November 2005 Online 19 November 2005


Figure 1
A view of the molecule of (I), showing the atom-numbering scheme and $50 \%$ probability displacement ellipsoids for non-H atoms.


Figure 2
Part of the crystal structure of (I), showing chains running along [100], formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions (dashed lines). H atoms not involved in the interactions shown have been omitted. [Symmetry codes: (a) $\left.1+x, y, z ;(b)-1+x, y, z ;(c) 2-x, \frac{1}{2}+y, \frac{1}{2}-z.\right]$
$\mathrm{C} 14 \cdots C g 2=3.83(3) \AA, \quad \mathrm{H} 14 A \cdots C g 2=3.02 \AA, \quad \mathrm{C} 14-$ $\mathrm{H} 14 \cdots C g 2=141.84^{\circ} ; \mathrm{C} 16 \cdots C g 4=3.81(5) \AA, \mathrm{H} 16 B \cdots C g 4=$ $2.95 \AA, \mathrm{C} 16-\mathrm{H} 16 B \cdots C g 4=148^{\circ}$ [Cg2 is the centroid of the pyridine ring and $C g 4$ is the centroid of the 4 -chlorophenyl ring, both with symmetry code $(x-1, y, z)$ ]. These interactions of methyl and methylene groups with aromatic $\pi$ systems contribute to the crystal packing of the title compound (Desiraju, 2002).

## Experimental

A solution of $N$-(2-chlorobenzylidene) pyridin-3-ylmethylamine ( 5 mmol ) and 4-chlorophenyl-5,5-dimethyl-1,3,2-dioxaphosphine 2oxide ( 5 mmol ) in anhydrous toluene ( 20 ml ) was stirred under reflux until the reaction was completed (monitored by thin-layer chromatography). After removal of toluene under reduced pressure, the residue was recrystallized from ethanol, to give the target compound as a colourless solid (yield $58 \%$, m.p. $457-458 \mathrm{~K}$ ). A crystal grown from a dichloromethane-ethanol solution (1:3) was selected for X-ray structure analysis.

## Crystal data

$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$
$M_{r}=491.33$
Monoclinic, $P 2_{b} / c$
$a=7.0888$ (6) A
$b=14.4398$ (13) A
$c=24.085$ (2) A
$\beta=96.112(2)^{\circ}$
$V=2451.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2345
reflections
$\theta=2.8-19.1^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.30 \times 0.20 \times 0.08 \mathrm{~mm}$

## Data collection

Bruker SMART APEX CCD areadetector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.900, T_{\text {max }}=0.972$
13139 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.138$
$S=1.03$
4804 reflections
295 parameters
H atoms treated by a mixture of independent and constrained refinement

4804 independent reflections
3147 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-17 \rightarrow 14$
$l=-28 \rightarrow 29$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0547 P)^{2}\right. \\
& \quad+0.4363 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{P} 1$ | $1.456(2)$ |  |  |
| :--- | :---: | :--- | :--- |
|  |  |  | $112.65(12)$ |
| $\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$ | $111.96(11)$ | $\mathrm{O} 1-\mathrm{P} 1-\mathrm{C} 7$ | $105.70(12)$ |
| $\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$ | $112.56(12)$ | $\mathrm{O} 2-\mathrm{P} 1-\mathrm{C} 7$ | $107.52(11)$ |
| $\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$ | $105.97(10)$ | $\mathrm{O} 3-\mathrm{P} 1-\mathrm{C} 7$ |  |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.93 | 2.59 | $3.394(4)$ | 145 |
| $\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{ii}}$ | $0.81(2)$ | $2.52(3)$ | $3.206(4)$ | $143(2)$ |

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x-1, y, z$.

Atom $\mathrm{H} 2 A$ bonded to N 2 was found in a difference map and refined with the $\mathrm{N}-\mathrm{H}$ distance restrained to 0.81 (2) $\AA$ and a free $U_{\text {iso }}$ parameter. Other H atoms were included in calculated positions and refined using a riding-model approximation. [Constrained $\mathrm{C}-\mathrm{H}$ bond lengths and isotropic $U_{\text {iso }}(\mathrm{H})$ parameters: $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic $\mathrm{CH} ; 0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl $\mathrm{CH}_{3} ; 0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene $\mathrm{CH}_{2}$; $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methine CH .]

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors are thankful to the Natural Science Foundation of China (No. 20302002) for financial support.

## References

Bruker (2000). SMART, SAINT, SADABS (Version 2.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju. G. R. (2002). Acc. Chem. Res. 35, 565-573.
Hirashima, A., Ishaaya, I., Ueno, R., Ichiyama, Y., Wu, S. Y. \& Eto, M. (1986). Agric. Biol. Chem. 50, 1831-1835.
Liu, Y., Wei, J., Shi, D. Q. \& Wang, C. G. (2005). Chin. J. Struct. Chem. 24, 196200.

Matsumoto, H., Seto, K. \& Sako, R. (1992). European Patent 485851.
Meier, C. (1996). Angew. Chem. Int. Ed. Engl. 35, 70-72.
Palacios, F., Alonso, C. \& de los Santos, J. M. (2005). Chem. Rev. 105, 899-932.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yamamoto, I., Yabita, G., Tomizawa, M. \& Hissasomi, A. (1994). J. Pestic. Sci. 19, 335-339.

